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Analysis of Gwided Waves Along the Cladded
Optical Fiber: Parabolic-Index Core and.

Homogeneous Cladding
MASAHIRO HASHIMOTO, MEMBER, IEEE, SHOJIRO NEMOTO, AND TOSHIO MAKIMOTO, MEM13ER,IEEE

Abstract—This paper is concerned with the determination of the

propagation characteristics of modes in the cladded optical fiber which

consists of a parabolic-index core and a uniform cladding. The propaga-

tion constants of propagating modes are obtained analytically. The

results are given in simple form. The asymptotic forms of the propaga-

tion constants are also given, which are valid for lower order mode
propagation.

1, INTRODUCTION

T

HE propagation characteristics of propagating modes

in the cladded parabolic-index optical fiber may be

determined from the solutions of Maxwell’s equations

subject to certain boundary conditions. This problem can

be reduced to the problem of solving the characteristic

equation which is derived by matching the physically

admissible solutions in core and cladding at the core

boundary. The Kurtz-Streifer approximation [1], [2] may

be useful in obtaining the approximate core solutions (the

vector modes [3]). With such an approximation, Yamada

and Inabe [4] have derived the characteristic equation,

However, the mathematical form ojf such an equation is

not suited to the computation of the propagation constants;

numerical techniques are required.

The purpose of this paper is to show that the charac-

teristic equation can be solved approximately using the

field decomposition approach previously developed in two-

dimensional cases [5], [6]. The forlmulas derived for the

propagation constants are simple in form. The asymptotic

formulas are also given, which are applicable for lower

order modes.

II. EXACT CHARACTERISTIC EQUATION

A. Field Components

The refractive-index variation of the cladded optical

fiber considered here is (see Fig. 1)

n(r) = no~l – xfi (1)

where no is the refractive index on the center i~xis (the z

axis), and z(r) is the truncated parabolic function defined

by the parabolic function when r is less than the core
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Fig. 1. Refractive-index profile of the cladded optical fiber.

radius a and the constant d when r exceeds a,

(

6(r/a)2, forr<a
x(r) = ~, for r 2 a.

(2)

This means that the refractive index of the homogeneous

cladding is no~l - d. In such a waveguide (a cladded
optical fiber), the electric and magnetic field components

are written asi

E= = U(r)ejrnO -j~z

Hz = –jYo V(r)ejmo ‘j~z

E, =
(

l—

)
/1 - b U’(r)+ !?! V(r) ,?jme-j~z

jk(b – X) r

Ee= 1
( 1

V’(r) + il – b U U(r) ej’’’j@j@
k(b – X) r

H,=– ‘0
(
{1 - b V’(r) + (1 - X) ~ U(r)

k(b – X) )

. ejmO – jfiz

He =
Y.

(
(1 - ~) U’(r) + /1 – b ~ V(r)

jk(b – X) 1

. ~“mO - j~z (3)

where m is an integer, k is the wave number on the z axis,

YO is the wave admittance (= k/quo) on the z axis, /3 is

1Equations (3) and (5) are cited frorb [1] and [4] with different
symbols. The readers should be careful not to confuse symbols when
they refer to earlier publications.
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the propagation constant, and b is the unknown parameter

which is associated with ~ by

~=k~l–b.

Therefore, we determine the parameter

The functions U(r) and V(r) are related

through the coupled differential equations

(4)

b instead of J1.

with each other

( x’U“(r) + ~ + -L . ._
b–~ )

U’(r)
r l–x,

.

= -“’W*) (++9

. _mJ~ (+-) ~
(5)

B. Fields in the Core and the Cladding

The vector modes in an uncladded optical fiber are called

TE waves and TM waves for m = O, and HE waves and

EH waves for & 2 1 [3]. According to this classification,

we write the bounded solutions of (5) in the core region as

[

{O;Vi(r)}, for TE waves

{tV,(r),O},
&:: :’::: (6){U(r), ~(r)} = <Ul(r),Vl(r)},

{U2(r), V,(r)}, for EH waves

while, in the cladding region, we find two types of waves

{O, V,(r)}, for TE waves
{U(r), V(r)} = ~{ U,(r),O},

for TM waves (7)

where

Uq(r) = V3(r) = K.(k~d - b r) (8)

and Km ii the modified Bessel function of mth order.

C. ~a;ching Coridit?orzs a~ r = a

The fields in the core region and the cladding region are

represented by the linearly combined forms

U(r) = AUl(r) + B.Cl,(r)

}V(r) = ztVl(r) + l?Vz(r) ‘
O<r<a

U(r) = – CU3(r)

)V(r) = –l)U3(r) ‘
a<r <co (9)

respectively, where A, B, C, and D are constants. The

transverse field components E. and HO are obtained sub-

stituting (9) into (3). These field components together with

Ez and Hz must be matched at the core boundary (r = a).

Such conditions are expressed by the matrix equation

r U,(a)

I
V;(a)

Vi’(a) + ~1 – b (m/a) Ul(a)

(1 – d) U1’(a) + ~1 – b (m/a) Vi(a)

U2(a)

V,(a).—
V2’(a) + i 1 – b (m/a) Uz(a)

(1 – @U,’(a) + ~1 – b (m/a) V,(a)

Us(a) o“
U,(a)

~1 - b &/a) U,(a) Us’(a)

(1 – @U,’(a) ~1 - b (m/a) U,(a).

rAl

U-B

c ‘0”
D

(lo)

The condition that (10) possesses a nontrivial solution is

that the determinant of the square matrix in (10) vanishes.

This is alternatively written as

[

‘U,’(a) U1’(a)— .
Us(a) Ul(a) 1

V,(a) U2(a)
.— .—,

Ul(a) Vz(a)

This is the exact

~ (or b).

[

, U3’(4 Vz’(a)— ——
Us(a) Vz(a) 1

[

Us’(a) Uz’(a)

1[

Us’(a) Vi’(a)
—— —. 1—,——.
Us(a) Uz(a) Us(a) Vi(a)

(11)

characteristic equation for determining

III. KURTZ-STREIFER APPROXIMATION

It may, in general, be difficult to obtain two sets of the

exact solutions of (5), {Ul(r), Vi(r)} and {Uz(r), V2(r)}.

However, if the index variation is sufficiently smooth, the

field may be considered to be a locally plane wave. Under

this assum~tion. the behaviors of electric (Ui(r)) and. .
magnetic ( Vi(r)) fields can be identified. Therefore, we can

approximate, in (5), x’/(l – x) = O, il – b = 1,

1/(1 – x) w 1 [1], and obtain

and

(12)

Kurtz and Streifer [1] have showed that the solutions of

(12) are given by (hereafter, the upper and lower signs

correspond to i = 1 and 2, respectively)

Ui(r) = f Vi(r)

=_
[

+ @~(r) + !32”
1

@i(r) , i = 1,2
r

@,(r) = 1
[ 1

Ui’(r) + U Ui(r) ,
k(b – X)

i = 1,2 (13)
r
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where @~(r) is the bounded solution of

[

(m T 1)2
Q:(r) + ; q’(r) + k’(b – ~) – - ~2

1

i = 1,2. (14)

This approximation is employed here; (13) is substituted

into (11). Then we obtain’

~ @i’(a)

()
–R Z, ~m ,

‘~=
i = 1,2

so
(15)

where So is the eigenspot size of the medium (s &z/k4$)

and

(
l~m

I?(x, + m) - —
+ k2S02(b – b)

x

)

U3’(a) + ~ ‘
i = 1,2. (16)

so —
Us(a) – x

IV. DETERMINATION OF PROPAGAT1ONComr.mm

To obtain the propagation constants from the charac-

teristic equation, the bounded solutions of (14) are sub-

stituted into (15). We see that such solutions are of the

form [7]-[9]

13

solution (17) as follows (Appendix I), using the field

decomposition technique [5], [6].

() ()~i(~) = cos (ZV)l’fl) ~ – sin (W)Q~d) ~f . (21)
o 0

The explicit definition for the functions P’$J(~) and

QP)(g), together with the physical interpretation and the
mathematical derivation of (21), is given in Appendix I.

The asymptotic aspects of these functions will be

summarized.

1) PV(”) and Qv(a) are, respectively, a damped solution

and a growing solution such that

as ~ + co, where r denotes the gamma function.

2) For v >> u and r < r, where r, is the turning point3

(= zso~v + (a + 1)/2, [2]), the complex solution P,(u) –

jQ, “) represents the outgoing wave of the WKB type

() ()@i(r) = 1 a~-(1/2)(r/s0)2~v(a) ~~

so S(,2‘
i = 1,2 (17)

‘p) (;)”-’QT)(;)
where L,(”)(x) is the Laguerre function [9], and a and v

are defined by

a-lm+-11, i = 1,2 (18)

(19)

If the core medium is infinitely extended, the value of v

must be taken to be equal to an integer n [1],, This is a

well-known fact in the theory ,of wave propagation in a

parabolic-index medium [1]. In such a case, the Laguerre

function is called the Laguerre polynomial of nth degree.

In our case, v is not equal to n; all the effects of the cladding

are included in the deviation of v frolm n, denoted by Av,

v=n+Av. (20)

The propagation characteristics cam now be determined

by studying the dependence of Av on the mode indices n

and m. To express Av as a function of the core radius and

the mode indices, we first try to decompose the bounded

2 By virtue of U~(r) = ~ Vi(r) [refer to (113)], (11) becomes

U,’(a) U{(a)

w) = U,(a) ‘
i ,= 1, 2.

Further, noting that x = d at r = a in (13), we can derive

O,(a)
~*; =k(b, .a)—

U,(a)

k’(b – J)@,(a)=—
lTm —

()

i=l,2.
@~(a) + — @,(a)’

a

Both equations are used to eliminate the term U~’(a)/ Uj(a), In this way,
we obtain (15)

where the amplitude function S,(r) is

Jiiji. r(v+~+l)
S,(r) =

r(v + I) (V +*)”’’=%” ’24)

Hence the complex conjugate wave P,(”) + jQV(a) is an

incoming wave.

3) P,(a) and Q,(”) are the standing waves cc)~posed of

the outgoing wave and the incoming wave under certain

reflection conditions. The field behaviors of P,(”) and

QN) are shown in Fig. 2(a) and (b), respectively.
We substitute (21) into (15). Then

cos (W)[P,(a)’(ta) + R(L, + MY’,(’)(L)]

— sin (ZV)[QV(U)’(L) + ~(t., i m) Q,(a)({.)] = o (25)

where & - a/So. Furthermore, we substitute cos (m) =

(- 1~ cos (nAv) and sin (rev) = (– 1)” sin (rcAv’) into (25),

noting that IPV(U)I f< IQ,(a) I and n >> IAv I for large &

The alternative expression of the resulting equation is

i =: 1,2. (26)

3 The point at which the optical ray is reflected is called the turning
point from the analogy of motion of a harmonic oscillatclr. The modes
satisfying r~ < a(r, > a) are propagating modes (cutoff modes).
Hence in our problem, r, < a is satisfied,
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n(r)

1

‘~>’

●&j7r,/4 Damped

+----- / ‘ave
+e jW4 !

(a) “
r

1
\

n(r)

[“) *

Growing
“n , w~ve
~!

.ei~/4 ~

r, r

(b)

Fig. 2. Interpretation of the field continuity at the turning point r,.

Obviously, this process of approximation allows us to

replace the value of b in R by the approximate value,4

(2x/;/ka)(2n + a + 1). To calculate (26), the mathematical

formulas for ?n(”)(~) and Qn(”)(~) are cited from Appendix I.

Q#)(<) = ~e-(1/2)~2qn(”)(&) (27)

where

p“(”)(x)

q>)(x) ) . E [e-xx”+a{!?o($d ’28)

= (-ly;x-” ‘n

and

po@)(x) = 1

pi(”)(x) = x – 1 – a

qo(o)(x) = ~ 1i(ex)
7C

(=~y+logx+x+~+~ +’””
n 2.2! 3.3! }

(29)

where the terms of ~ are to be omitted when a = O,

Ii(x) is the logarithmic integral function [7], and y is the

Euler constant (= 0.57721 . ..). It may be convenient to

use the following recurrence formula when obtaining

qn(a)(x) for n > 2:

qfb) = – : {(2rr + a – 1 – X)q$)l(x)

+ (n + a – l)q:)2(x)}. (30)

4 The exact value of b, (2v’;/ka)(2v + a + 1) [see (19)] is approx-
imated. This approximation is not valid near the cutoff frequency.
The value of AV of the TEO ~ mode at the cutoff frequency, which was
obtained from the numerical analysis by Okoshi and Okamoto [11], is
–0.1 18, whereas (26) yields –0.124.

(a)

20

10

5

2

I

o

-[

(b)

Fig. 3. Solutions Pn(m)(&)(dotted curves) and Qn(m)(E)(solid curves) for
various n. (a) m = O. (b) m = 1.

We note that the same formula is applicable for pm@)(x)

(= (– l)”LM(”)(x)). Examples of P~m)(~) and Q~mJ(~) are
shown in Fig. 3(a) and (b),

As is seen from (4) and (19), the propagation constants

can be calculated by

P=.J+J(.+AV+”+ ,=1,,.

(31)

The value of Av is, in general, negative, so that the value

of/3 becomes slightly large when the cladding exists.

When m = O, (26) yields the same result for i = 1 and 2,

and therefore the propagation constants of TEO ~and TMOl

modes (1 = n + 1) are the same. When m > 1, i = 1 and

2 correspond to HE~l and EM~l modes, respectively [3].

The negative values of Av for such modes are plotted in

Fig. 4. If <= is large compared with unity, it is possible to
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$

I 64 ❑

I 05 —
o 12345

Fig. 4. The values of – Av for guided n?odes. The dotted curves
indicate the first-order asymptotic solutlons. a—HEl 1, b—TEo 1,
TMo,, HEZ1, c—EH1i, HE31, d—HElz, e—EH~l, HE41, f—TEoz,

TMOZ, HEZZ, g—EHsl, HE51, h—EHiZ, HESZ, 1—HE13, J—-=tzz,

HE4Z, k—TEOs, Th403, HE23, 1—EH32, HE52, m—EHls, HE33,

n—HElq, o—EH23, HE43, P—TE04, Th’f04, HE24, q—13Hss, HE53,

r—EHIA, HES4, s—HEIs.

express Av by the asymptotic form (Appendix II)

“{~_2[(~– l)(n+u–l)– 7/4]
}~az — ‘

i = 1,2. (32)

The dotted curves in Fig. 4 indicate the asymptotic results

computed from (32). These curves show that the asymptotic

formula is a very good approximation of (26) unless the

turning point is close to the core boundary.

V. COMPARISON WITH THE NUMERICAL ANP,LYSIS

To check the validity of the field decomposition analysis

presented here and the formula of Av, we consider the

propagation of the HEII, TEOI, TMOI, HE21, and EHII

waves in the lower order mode fiber whose core radius

is chosen to be relatively small. The values of Av for these

waves are compared with the numerical results by Ahmew

[10]. The graphical data of Ahmew for the :normalized

propagation constants are translated into the numerical

data of Av, using the relation (31). Such data are Av =
–0.021 at ~a = 1.75 for the HE,, wave, Av = –0.023

at t. = 2.25 for the TEOI, TMOI, and HEZ ~ waves, and
Av = – 0.062 at & = 2.5 for the EHI ~ wave. On the other

hand, the theoretical values of Av derived from (26) are

– 0.022, – 0.023, and – 0.058, respectively. These values

are in good agreement with the numerical data.

VI. CONCLUSION

The propagation constants of the propagating modes

along the cladded parabolic-index optical fiber have been

presented in simple form, using the approximate core

solution derived by the Kurtz-Streifer approximation. The

field decomposition analysis has been employed to approx-

imately solve the characteristic equation and to obtain the

analytic solution. The validity of the present analysis has

been checked by comparing the theoretical results presented

in this paper and the numerical results by Ahmew. ‘

APPENDIX I

FIELD DECOMPOSITION

We show that @i(r) is decomposed into a damped wave

and a growing wave which tend to zero and infinity as
r - m, respectively,

A, Physical Interpretation

To explain the physical significance of the field decom-

position in the inhomogeneous medium from the asympt@ic

behavior of @i(r), it is assumed that 1) the index variation

is sufficiently smooth, and 2) the field variation in 6 is

sufficiently small compared with that in r (v >> w).

Now, for simplicity, we consider the special case of v = n.

Then, if r c r,, @i(r) is given by the asymptotic form [~]’

@i(r) 2!
2(n + a)!

“(n +“+Y’2iJ::) ’’+1(”(r)) ‘:)

where J denotes the Bessel function, the prime indicates

differentiation, and
I

JO

Applying the asymptotic formula, for large argument,

.J;+l(X) = – J(T 3
—sin x–~a––x

24 )
(A3)

7CX

to (Al), we obtain

(Sv(r) cos nrt + ~ – k
J )

‘t ~b - ~(t) dt (A4)
—.

@i(r) w
2’

where Sri(r) is the amplitude function defined by (24),

s They gave the asymptotic solution with an arbhrary magnitude.
The complete form is uniquely determined from the condhion

~t(r)~ (n + a)! r a()— . asr+O.~! a! & ‘
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When v # n, the asymptotic form of Q;(r) maybe given c1 .!?. o r: 1

by an analytic continuation of (A4),

(s,(r) COS i’CV + :- k “<b - ~(t) dt
J r )

(J

n
COS (7cV)&(r) COS – — k

)
‘t ~b - ~(t) dt

4,

(A5)

++-*
(a) (b)

A .B
(c) (d)

Fig. 5. The paths of integration on the tplane.

(Jn
— sin (zv)$(r) sin – – k

)
“ x/b - ~(t) dt .

4,
When a is an integer, the Laguerre function L$)(x) is

‘A6) expressed by [9, p. 268, eq. (37), and p. 272, eq. (3)]6

In (A6), @i(r) is decomposed into two waves. To inspect

the behavior of these waves in the region such that r s rt,

the WKB theory [12] is used. This theory is illustrated in

Fig. 2(a) and (b). Fig. 2(a) [Fig. 2(b)] shows that the wave

which tends to S,(r) cos (7c/4 – O)[S,(r) sin (7c/4 – O)], as

r a rt in the oscillatory region, will decay (grow) expon-

entially as r ~ m. It can therefore be concluded that the

first and second terms in the right-hand side of (A6) express

the damped and growing waves, respectively. The wave

P,(a) – jQ~) is just the outgoing wave in Fig. 2(a) and (b).

B. Derivation from the Theory of Confluent

Hypergeometric Functions

“P,(”) (r/SO) and Qv(”)(r/SO) are two independent solutions

of (14). Therefore, the functions defined by

~,(qx) ~ ~-wexl’ Qf)(s/i) (A7)

are two independent solutions of Laguerre’s differential

equation

Xy’’(x) + (a + 1 – X)y’(x) + Vy(x) = o (A8)

and (21) is equivalent to

r(~ + V + 1) ~X/2X- (a+ 1)/2Mv + ~a+ 1)/2,a/2(x)
Lpyx) =

~!r(v + 1)

(A13)

1

$

(0+,1+)
=—_

2xj ~,

(–t)-’-l(l – t)’’+’ex’ dt

(A14)

~– j~v

f

(0+,1+)
.— t

2nj c,
‘V-l(l – t)’+”ex’ dt (A15)

where M,P(x) is the Whittaker function [7] and the path

C, is shown in Fig. 5(c) [in (A14), arg (– t)=

arg (1 – t) = O at the point A, and in (A 15), arg t =

arg (1 – t) = O at the point B].

We decompose C3 into C3’ and C3° [Fig. 5(d)]. Then,

the integrals of (Al 5) on C3’ and C3° are written as

M

.

C3° q“

and

J

= ej’n(v+d

J

= _ ~“2nv

C3’ – C2’ J C2’

L~)(x) = cos (nv)p,(a)(x) – sin (nv)q~)(x). (A9) where the negative sign of – C2’ indicates that the integra-

From (22), p,(’)(x) and q,(’)(x) must be tion is to be carried out in the opposite sense. Thus

P,(”)(x) + ~’/r(v + I) l,<)(x) =

q,(”)(x) ~ r(v + a + l)e’/7cxV+”+ 1 (A1O)

as x ~ co. We prove that for x s O, v z O, and a =
=

0123”””,9999 such functions are given by

J

P$)(X) = ~ t-’-l(l – t)v+a&’ dt
.

2rcj c1

(All)

~f)(x) = -L
J2n c,. +C,,,

t‘“-1(1– t)v+aex’ dt (A12)

e–j~v

–f2zj c3r+c3p,

S’Jc,-a,
Cos (m) ~.

J27tJ c,,!- c,!

J
– sin (7cv) ~ .

27C (-2,,+c,,
(A16)

where Cl, C2’, and C2° are the paths of integration on the

tplane [see Fig. 5(a) and (b)], and arg t = arg (1 – t) = O
6 [9, eq. (37)] should be corrected as follows:

at the interval (0,1) of the real axis of tke tplane. Lv(’=yx) = r(a+~+l)
@(– v,a + 1,X).

Proof: We give the proof using the theory of confluent
a! r(y + 1)

hypergeometric functions.
Equation (A14) can be derived from the above definition and the
@function in [9].
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Noting that Cz” – C2’ = Cl, we see that (A16) represents
(A9).7 It is easy to verify (A1O), carrying out the integration

of (Al 1) and (A12) on the dominant parts of the paths of

integration which contribute significantly to the integrals

(the derivation is omitted here).

Next, we prove (28). For pi(”)(x), (28) is evident from

pn@(x) = (– l)”L.(”)(x); this is the alternative definition

of the Laguerre polynomials [8], [9].

By means of the transformation t = 1 – u/x, we

rewrite (A12) as

Jqn(a)(x) = – ~ X-” U“+;(X – u)-n-le-” &

[J 1

= (–1~ + &x-a ~ – -!_ ‘n+’ e-u du .
. dxn 2X x–u

(A17)

We use the relation u“ = (x + u – x)” = x’” + nx”- 1 “

(u – x)+””” + (u – x)”. Then

Jun+a
— e-u du
x—u

J u’
. — e-u(xn + “” “) du

x—u

J=x” --= e-u du
x—u

+ (a polynomial of x with degree n – 1),

The first term in the last line represents – 2xe-xx”+aqo(a](x).

This result is substituted into (A17). Sirice the polynomial

appearing in the right-hand side vanishes by nth differen-

tiation, we obtain

qn(a)(X) = (– 1~ ~ exx-’ <dxn [e-’x”+’qo(’)(x)]. (A18)

Finally, we give several important relations for q.(a)(x),

Xqn(a)’(x) = nqfl)(x) + (n + a)q$21(x), n~l

~fl)’[x) = – q:j:(~) + qg)l(x), n~l

pfi)(x)q$)’(x) – P#)’(x)qf’(x) = @ ;,~)’! 1 ex ,
z X=+l [6]

n ;> O. (A19)

APPENDIX 11

DERIVATION OF (32)

To derive (32), we use the asymptotic formulas

p“(’)(x) != ; [x” – Z@ + Cx)x”- 1] (A20)

7 Using the Whittaker function W.&(x) [7], p,(-)(x) can also be written
as

1
%(”)(x) = ~(” + ~, e(x’2)x-(=+ ‘)’2 Wv+(=+ 1)12,a12(x).

(A21)

x K ‘(X) 1 (4m2 – 1) 1~~ —~. . — ,— (A22)
K.(x) 2 8 .x

+ (f2nz – 1)(-12m – 3]/8tj.3

- [(2n + l)(n + a + 1/2) + l/8]/Ca’.

(A23)

Therefore,

“[

~_( n - 2)(n ; ~) - 2n -3] (A24)
0

()
~(lmaz

[ 1

n(n + a) – +
& ~ (n+~)!wo 1+ ~2 —. (A25)

n a a

Substituting (A24) and (A25) into (26) and approximating

the resulting equation, we obtain (32).
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