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Analysis of Guided Waves Along the Cladded
Optlcal Fiber: Parabolic-Index Core and
Homogeneous Cladding

MASAHIRO HASHIMOTO, MEMBER, IEEE, SHOJIRO NEMOTO, ano TOSHIO MAKIMOTO, MEMBER, IEEE

Abstract—This paper is concerned with the determination of the
propagation characteristics of modes in the cladded optical fiber which
consists of a parabolic-index core and a uniform cladding. The propaga-
tion constants of propagating modes are obtained analytically, The
results are given in simple form, The asymptotic forms of the propaga-
tion constants are also given, which are valid for lower order mode
propagation. '

1. INTRODUCTION

HE propagation characteristics of propagating modes

in the cladded parabolic-index optical fiber may be
determined from the solutions of Maxwell’s equations
subject to certain boundary conditions. This problem can
be reduced to the problem of solving the characteristic
equation which is derived by matching the physically
admissible solutions in core and cladding at the core
boundary. The Kurtz-Streifer approximation [1], [2] may
be useful in obtaining the approximate core solutions (the
vector modes [3]). With such an approximation, Yamada
and Inabe [4] have derived the characteristic equation.
However, the mathematical form of such an equation is
not suited to the computation of the propagation constants;
numerical techniques are required.

The purpose of this paper is to show that the charac-
teristic equation can be solved approximately using the
field decomposition approach previously developed in two-
dimensional cases [5], [6]. The formulas derived for the
propagation constants are simple in form. The asymptotic
formulas are also given, which are applicable for lower
order modes.

II. Exact CHARACTERISTIC EQUATION
A. Field Components

The refractive-index variation of the cladded optical
fiber considered here is (see Fig. 1)

n(r) = no\J1 — y(r) (1)

where n, is the refractive index on the center axis (the z
axis), and y(r) is the truncated parabolic function defined
by the parabolic function when r is less than the core
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Fig. 1. Refractive-index profile of the cladded optical fiber.

radius @ and the constant é when 7 exceeds a,

o(r/a)’,

forr <a
2y = i

forr > a.

@

This means that the refractive index of the homogeneous

cladding is nox/ 1 — &. In such a waveguide (a cladded
optical fiber), the electric and magnetic field components
are written as’

E, = U(r)emo=is

z

H, = YoV (r)eim =

_ 1A, m pim8= iz
E ST {\/1 bU(r) + - V(r)} 2
1 [0 /1T =" jmo = jz
gty o T30
Y,
H = k_(b_——?) {Jl bV + (1 —x0)= U(r)}
. gIm0- iz
Y,
. ejmo—J[iz (3)

where m is an integer, k is the wave number on the z axis,
Y, is the wave admittance (= k/wpy,) on the z axis, f is

1 Equations (3) and (5) are cited from [1] and [4] with different
symbols. The readers should be careful not to confuse symbols when
they refer to earlier publications.



12 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JANUARY 1977

the propagation constant, and b is the unknown parameter
which is associated with 8 by

B =kJ1 —b. @)

Therefore, we determine the parameter b instead of S.
The functions U(r) and V(r) are related with each other
through the coupled differential equations

0o+ (Le L
r

— )Um

1—
+ [w6 - 0 - 2] vey

T () ()

'

Vi) + (% + Z—’i——x) V') + [kz(b 0 - —] Vi)

- —mT= 3 () YO

b—y r (%)

where ' = dy/dr.

B. Fields in the Core and the Cladding

The vector modes in an uncladded optical fiber are called
TE waves and TM waves for m = 0, and HE waves and
EH waves for m > 1 [3]. According to this classification,
we write the bounded solutions of (5) in the core region as

{0,71(n}, for TE waves
_ J{Ux(n),0}, for TM waves
{U(r), V(r)} - {Ul(r),Vl(r)}, for HE waves (6)
{U,(r),Vo(r)},  for EH waves
while, in the cladding region, we ﬁnd two types of waves
_ ({0,V3(r)},  for TE waves
e,y e) = {Us(r),0}, for TM waves (7)
where
Us(r) = Va(r) = K (kN6 = b 1) ®)

and K, is the modified Bessel function of mth order.

C. Maichihg Conditions at r = a

The fields in the core region and the cladding region are
. represented by the linearly combined forms

U(r) = AUl(r) + BUZ(")} 0Lr<a ,

V(r) = AV (r) + BV,(r)
ur) = —CU3(r)} )

V(r) = —DULr)|’ asr< o )]

respectively, where A, B, C, and D ar¢ constants. The
transverse field components E, and H, are obtained sub-
stituting (9) into (3). These field components together with
E, and H, must be matched at the core boundary (r = a).

Such conditions are expressed by the matrix equation
U@
V,(a)
V(@) + V1 = b (mla)U,(a)
(1 ~ U@ + V1 ~ b (m/a)V,(a)
Us(@)
V;(a)
V'@ + 1 = b (mla)U,(a)
(1 = OV @) + V1 — b (mla)V,(a)
Us(a) 0
0 Us(a)
V1= b(maUsa) Uy
1 -9U @ V1 - b@ma)Usa)

= 0.

A
B
c (10)

o

The condition that (10) possesses a nontrivial solution is
that the determinant of the square matrix in (10) vanishes.
This is alternatively written as

I:Usl(a) _ Ull(a)] ) [Us (@ _ Vzl(a)]
Us(@ U@l LUs@@ V(o)
_ V@ Ua [U!(a) _ Uz'(a)] . {Usl(a)‘__ V1'(a)] '
U@ Vi@ LUs(@ Uy(a) Us(@) @
‘ an

This is the exact characteristic equation for determining

B (or b).

ITII. KURTZ-STREIFER APPROXIMATION

It may, in general, be difficult to obtain two sets of the
exact solutions of (5), {U,(r),Vi(r)} and {U,(r),V,(r)}.
However, if the index variation is sufficiently smooth, the -
field may be considered to be a locally plane wave. Under .
this assumption, the behaviors of electric (U(r)) and
magnetic (V,(r)) fields can be idéntified. Therefore, we can
approximate, in (5), ¥'/(1 — ¥) ~ 0, V1 —b~1, and
1)1 — y) ~ 1[1], and obtain

(e (e 5o we -0 -2 1)

o))
b—y/ r U@
Kurtz and Streifer [1] have showed that the solutions of

(12) are given by (hereafter, the upper and lower signs
correspond to i = 1 and 2, respectively)

Ulr) = 1 Vir)

- —torw+ o] -2
o) =—r |y "u = !
00) = U0 £ 2ue], i=12 09
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where @,(r) is the bounded solution of
2
/() + L 0/0) + [kz(b - (-".’-il] o,r) = 0,
r r

i=12 (14)

This approximation is employed here; (13) is substituted
into (11). Then we obtain?

—R ( +m) i=12
So’

where S, is the eigenspot size of the medium (= J a/k\/ 5)
and

R(x,+m) = r tm,
X

s, 2@ _

o) (15)

k2S,4(b — §)
S U3 (a)
3(0)

IV. DETERMINATION OF PROPAGATION CONSTANTS

}, i=12. (16)

To obtain the propagation constants from the charac-
teristic equation, the bounded solutions of (14) are sub-
stituted into (15). We see that such solutions are of the
form [7]-[9]

P2
O(r) = ( ) —(1/2)(r/So)2L (@) ( )’ i=12 (17)
So So?

where L,®(x) is the Laguerre function [9], and « and v
are defined by

o=|imFl, i=1,2 (18)
1 (ka 1

=L (ka), 1 . 1

v 4(\/5)b 2(oz+1) 19

If the core medium is infinitely extended, the value of v
must be taken to be equal to an integer » [1]. This is a
well-known fact in the theory of wave propagation in a
parabolic-index medium [1]. In such a case, the Laguerre
function is called the Laguerre polynomial of nth degree.
In our case, v is not equal to #; all the effects of the cladding
are included in the deviation of v from n, denoted by Av,

v =n+ Av. 20)

The propagation characteristics can now be determined
by studying the dependence of Av on the mode indices n
and m. To express Av as a function of the core radius and
the mode indices, we first try to decompose the bounded

2 By virtue of U,(r) = + Vi(r) [refer to (13)], (11) becomes

Us(@) _ U/@ .
U@ = Ul b
Further, noting that y = é at r = ain (13), we can derive
Ui (@)
U@ 2=~ 974

k2(b — 8)®(a)
w@+C+ﬂto

Both equations are used to eliminate the term U;’(a)/U(a). In this way,
we obtain (15)

i=1,2

13

solution (17) as follows (Appendix I), using the field
decomposition technique [5], [6]-

®(r) = cos (nv)P,® (_r_) — sin (7v)Q,® (I—) D
So S

The explicit definition for the functions P. @) and
0,@(¥), together with the physical interpretation and the
mathematical derivation of (21), is given in Appendix I
The asymptotic aspects of these functions will be
summarized.

1) P, and Q,“ are, respectively, a damped solution
and a growing solution such that

1 _ 2
Pv(a) 2vta,—(1/2)8
(f) g F—(v 1) 4

Q.90 >~ T + u + DEPTCRANE ()
1

as £ — o0, where I' denotes the gamma function.
2) For v » « and r < r, where r, is the turning point3

(= 2SoVv + (x + 1)/2, [2]), the complex solution P,® —

7O, represents the outgoing wave of the WKB type

ERE
~ s exp |- T+ jk f Ve—awa| @

where the amplitude function S,(r) is
V8/m T + o + 1)

TG+ 1) (v + ¢ “2L 1)”2 Nirdb — 1)

Hence the complex conjugate wave P, + j0,® is an
incoming wave.

3) P, and Q, are the standing waves composed of
the outgoing wave and the incoming wave under certain
reflection conditions. The field behaviors of P, and
Q,® are shown in Fig. 2(a) and (b), respectively.

We substitute (21) into (15). Then

cos (mV)[ P, (&) + R, =m)P,P()] ‘
— sin (W)[Q,*'(&) + R, tm)Q,P ()] = 0 (25)

where &, = a/S,. Furthermore, we substitute cos (nv) =
(—1)" cos (mAv) and sin (nv) = (—1)" sin (zAv) into (25),
noting that [P,| « [Q,”| and n > |Av| for large ¢&,.
The alternative expression of the resulting equation is

~ (1 -1 [P, + R(,, £m)P, (&)
A = (n) tan [Q,,(“)’(é) + R(fa,_m)Q,.‘i“’(é,,)] ’
= 1,2. (26)

(24)

5.r) =

% The point at which the optical ray is reflected is called the turning
point from the analogy of motion of a harmonic oscillator. The modes
satisfying r, < a(r; > a) are propagating modes (cutoff modes).
Hence in our problem, r; < a is satisfied.
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n(r)

n(r)

Growing
wave

(b)
Fig. 2. Interpretation of the field continuity at the turning point r,.

Obviously, this process of approximation allows us to
replace the value of b in R by the approximate value,*

(2\/ 5/ka)(2n + o + 1). To calculate (26), the mathematical
formulas for P,(¢) and Q,(¢) are cited from Appendix L.
| P,O() = grem Dy, 0(g2)

0, (&) = EremID¥, (R @7

where
2. (x)

o) = (-0 S 4 [e_x"m {qo“‘l’(x)}] @®

and

Po(a)(x) =
%) =x-1-ua
. ex a—1 l |
20°(x) = ¢o'V(x) — - ) FL
T =0 X
e e (o — DI
4:96) = pOWa 0w — & + £y @ Dl
T ®iTe x

209(x) = i li(er)

2 3
]
2-2! 33!
(29)

{y+logx+x+

|
i

where the terms of Y are to be omitted when o = 0,
li(x) is the logarithmic integral function [7], and y is the
Euler constant (= 0.57721 ---). It may be convenient to
use the following recurrence formula when obtaining
q,9(x) forn > 2:

3P0 = -1 {@n +a - 1 — 0g®@,x)
n

+ @+ o — l)q("‘) x)}. (30)

4 The exact value of b, (2\/ olka)2v + « + 1) [see (19)} is approx-
imated. This approximation is not valid near the cutoff frequency.
The value of Av of the TE,; mode at the cutoff frequency, which was
obtained from the numerical analysis by Okoshi and Okamoto [11], is
—0.118, whereas (26) yields —0.124.

®)
Fig. 3. Solutions P,M™(¢) (dotted curves) and Q, ""’(6) (solid curves) for

various n. (@ m = 0. (b) m =

We note that the same formula is applicable for p,®(x)
(= (= D"L,“(x)). Examples of P,"™(¢) and Q,"™ (&) are
shown in Fig. 3(a) and (b).

As is seen from (4) and (19), the propagation constants
can be calculated by

o + l) ,
s t =
2

SN TaY

The value of Av is, in general, negative, so that the value
of f becomes slightly large when the cladding exists.

When m = 0, (26) yields the same result for i = 1 and 2,
and therefore the propagation constants of TE,; and TM,,;
modes (/ = n + 1) are the same. Whenm > 1,i = 1 and
2 correspond to HE,; and EM,,, modes, respectively [3].
The negative values of Av for such modes are plotted in
Fig. 4. If ¢, is large compared with unity, it is possible to

1,2.

@31
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Fig. 4. The values of —Av for guided modes. The dotted curves
indicate the first-order asymptotic solutions. a—HE,;, b—TE,;,
TMo;, HEz1, c—EH; 4, HE;y, d—HE,,, e—EH,1, HE4y, f—TE,,,
TMoz, HE5, g—EH3;, HEsi, h—EH,,, HEs;, i—HE, 3, j—EH;,,
HE,,, k—TEys, TMos, HEz3, | —EHj,, HEs,, m—EH,;, HE;,,
n—HE,4, 0—EH;3, HE43, p—TEq4, TMo4, HE24, ¢—EH33, HEs3,
I'—EH14, HE34, S——-HEls.

express Av by the asymptotic form (Appendix II)

sz—lﬂ. ~&a?
4n!(n+ o)
) 1_2[(n—1)(n+oc—1)—7/4],
&2

i=12. (32)

The dotted curves in Fig. 4 indicate the asymptotic results
computed from (32). These curves show that the asymptotic
formula is a very good approximation of (26) unless the
turning point is close to the core boundary.

V. COMPARISON WITH THE NUMERICAL ANALYSIS

To check the validity of the field decomposition analysis

presented here and the formula of Av, we consider the

propagation of the HE,,, TEy;, TM;;, HE,,, and EH,,
waves in the lower order mode fiber whose core radius
is chosen to be relatively small. The values of Av for these
waves are compared with the numerical results by Ahmew
[10]. The graphical data of Ahmew for the normalized
propagation constants are translated into the numerical
data of Av, using the relation (31). Such data are Ay =
—0.021 at ¢, = 1.75 for the HE,, wave, Av = —0.023
at &, = 2.25 for the TEy;, TMy,, and HE,; waves, and
Av = —0.062 at £, = 2.5 for the EH,,; wave. On the other
hand, the theoretical values of Av derived from (26) are
—0.022, —0.023, and —0.058, respectively. These values
are in good agreement with the numerical data.

15

V1. ConcLusION

The propagation constants of the propagating modes
along the cladded parabolic-index optical fiber have been
presented in simple form, using the approximate core
solution derived by the Kurtz-Streifer approximation. The
field decomposition analysis has been employed to approx-
imately solve the characteristic equation and to obtain the
analytic solution. The validity of the present analysis has
been checked by comparing the theoretical results presented
in this paper and the numerical results by Ahmew. ‘

APPENDIX 1
FIELD DECOMPOSITION

We show that ®, 4(r) is decomposed into a damped wave
and a growing wave which tend to zero and 1nﬁn1ty as
r — o0, respectively.

A. Physical Interpretation

To explain the physical significance of the field decom-
position in the inhomogeneous medium from the asymptotic
behavior of ®,(r), it is assumed that 1) the index variation
is sufficiently smooth, and 2) the field variation in @ is
sufficiently small compared with that in r (v > «).

Now, for simplicity, we consider the special case of v = n.
Then, if r < r,, ®,(r) is given by the asymptotic form [271°

2(n + oz)'

o+ 222

where J denotes the Bessel function, the prime indicates
differentiation, and

k fo Jb — 3(t) dt

Ofr)

a/z T \/ 4w g, () (Al)

'

u(r)

i

n(n+°‘+1)—kf \/b—x(l‘)dt (A2)

Applying the asymptotic formula, for large argument, ‘

Jo0) = — | sin (x L 37:) (A3)
X 2 4

to (A1), we obtain
@(r) ~ S,(r) cos (nn + % k| Jb — x(ts dt) (A4)
where S,(r) is the amplitude function defined by (24).

% They gave the asymptotic solution with an arbitrary magnitude.
The complete form is uniquely determined from the condition

(n + a)!
Al ol (Eo) , asr — 0.

Dy(r) >
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When v # n, the asymptotic form of ®,(r) may be given
by an analytic continuation of (A4),

@) ~ S,(r) cos (nv + Z—; -k f “Jb = 20 dt) (A5)
— n — rt .
= cos (mv)S,(r) cos (Z k f N dt)

— sin (7v)S,(r) sin (% -k frt N x(t) dt).
(A6)

In (A6), ®,(r) is decomposed into two waves. To inspect
the behavior of these waves in the region such that r > r,,
the WKB theory [12] is used. This theory is illustrated in
Fig. 2(a) and (b). Fig. 2(a) [Fig. 2(b)] shows that the wave
which tends to S,(r) cos (z/4 — O)[S,(r) sin (n/4 — 0)], as
r — r, in the oscillatory region, will decay (grow) expon-
entially as r —» co. It can therefore be concluded that the
first and second terms in the right-hand side of (A6) express
the damped and growing waves, respectively. The wave
P, — jO.@ is just the outgoing wave in Fig. 2(a) and (b).

B. Derivation from the Theory of Confluent
Hypergeometric Functions

P, 9(r/S,) and Q,®(r/S,) are two independent solutions
of (14). Therefore, the functions defined by

2Ox) = x~2¢* PO/ x)

7,9(x) = x~2¢"*Q,®(/x)

are two independent

(A7)

solutions of Laguerre’s differential

equation
") + (@ + 1 —x)pyx) +vw(x) =0 (AS)
and (21) is equivalent to
L9(x) = cos (m)p,(x) — sin (m)g,”(x). (A9)

From (22), p,*(x) and ¢, (x) must be
2P - XT + 1)
3,9(x) » T(v + a + Defax***1 (A10)

as x — oo. We prove that for x > 0, v > 0, and a =
0,1,2,3,- - -, such functions are given by

t—v——l(l — t)v+aeaﬁt dt
Cy

@y — L
(%) Py (Al1)

q,(x) = if 7T — e de (A12)
27[ Cx'+Cy”

where C,, C,’, and C,” are the paths of integration on the
t plane [see Fig. 5(a) and (b)],and arg ¢t = arg(1 — ) = 0
at the interval (0,1) of the real axis of the ¢ plane.

Proof: We give the proof using the theory of confluent
hypergeometric functions.

0 '
G 8 O G
e s
(a) (b)
0 o ! 0 ¢ :
A B
{c) (d)
Fig. 5. The paths of integration on the ¢ plane.

When « is an integer, the Laguerre function L, “(x) is
expressed by [9, p. 268, eq. (37), and p. 272, eq. (3)]°

I'c +v+1)

L.® =
) = Te T D

2. - 2
2 x7 DM 4 (s1y2,02(%)

(Al13)

1 (0+,1+)

(_t)—v—l(l _— t)v+aext dt

27Tj Cs
(Al4)
e—jnv 0+,1+)
- ff £ — 1t de (ALS)
n.l Cs

where M, ,(x) is the Whittaker function [7] and the path
C, is shown in Fig. 5(c) [in (Al4), arg(—¢) =
arg (1 — #) = 0 at the point A, and in (AlS5), arg¢ =
arg (1 — ¢) = 0 at the point B].

We decompose C; into C3' and C;” [Fig. 5(d)]. Then,
the integrals of (A15) on C;’ and C;” are written as

fcs,, fw
f = pi2nva) f — g f
o ey &

where the negative sign of — C,’ indicates that the integra-
tion is to be carried out in the opposite sense. Thus

e—jnv‘[
2ch Cy' +C3”
e—juv‘l‘ ejﬂ:vJ'
2nj cy” 2nj [or%
1.
cos (v) —
27!] Cy”"—Cyp’

. — sin (nv) —1—f .
27Z Cy’+Cof

and

L) =

(A16)

619, eq. (37)] should be corrected as follows:
T(e+v+1)
a! T(v + 1)

Equation (A14) can be derived from the above definition and the
@ function in [9].

L,(x) = O(—v,a + 1,%).
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Noting that C,” — C,’ = C,, we see that (A16) represents
(A9).” It is easy to verify (A10), carrying out the integration
of (A11) and (A12) on the dominant parts of the paths of
integration which contribute significantly to the integrals
(the derivation is omitted here).

Next, we prove (28). For p,®(x), (28) is evident from
2,2(x) = (—1)"L,(x); this is the alternative definition
of the Laguerre polynomials [87, [9].

By means of the transformation ¢ =1 — u/x, we
rewrite (Al2) as

X

7900 = - x7= f W — w) " e di
2n
1 [ 1 [t
= (-l —exr = = | — e du.
¢ )n! x dx"[ 2nfx—ue u]
(A17)

We use the relation " = (x+u—x=x"+nx""1-
(—x)+ -+ (u— x)" Then

+a
u" _
f e “du
X —u

=f u e—u(xn + ...) du
X —Uu

=x"f “ e " du
X —u

+ (a polynomial of x with degree n — 1).

The first term in the last line represents —2me™*x"*%g,®(x).
This result is substituted into (A17). Sirice the polynomial
appearing in the right-hand side vanishes by nth differen-
tiation, we obtain
(o) n 1 X~ 0 ’d"' —-x.n+a, (@) A
GOG) = (=1 = &x7* T [T g O(®)]. (A8)
n! dx

Finally, we give several important relations for ¢,(x),

X4, 2'(%) = ng,Ox) + (0 + g2y (x), n=1

3. (x) = —g21x) + ¢2(), nxl
) X
PR ) = p (90,00 = D] —
n!  nx*
n>0. (Al19)
APPENDIX II
DERIVATION OF (32)
To derive (32), we use the asymptotic formulas
2,9(x) ~ —1—' [x" — n(n + o)x""1] (A20)
n!

7 Using the Whittaker function W,.,(x) [7], p,*(x) can also be written
as

1

P(x) = o+ D eXDx=CHORW | (i 1y12,012(%)-

17

qn(a)(xj ~ (n+ ! € [1
‘ T

xn+a’+1

+ n+ D@+ o+ 1)]
X
(A21)

i@ 1 _Gm = D1

K, (x) 2 8 (A22)

and
R(E,tm) ~ 126, + VEE = 22n + a + 1)
+ (£2m — 1)(£2m — 3)/8E,3
~ & — (20 + a + 1/2)/E,
— [@n + D + o + 1/2) + 1/8)/&.

(A23)
Therefore,
P(Z) + R(Zm+m)P,2(E)
le—(llnéaz 2n+a—1
DA TR
[1 _(n—=2)(n + o) — 2n — %] (A24)
&2
Q. @'(€,) + R(&, m)Q, D (E,)
~ (%) n + a)!%-[ %_ﬂ (A25)

Substituting (A24) and (A25) into (26) and approximating
the resulting equation, we obtain (32).
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